English

Find `Int (2cos X)/((1-sinx)(1+Sin^2 X)) Dx` - Mathematics

Advertisements
Advertisements

Question

Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`

Solution

Let `sin x = t => cos x dx = dt`

`int (2dt)/((1-t)(1+t^2))`

Using partial fraction

`2/((1-t)(1+t^2)) = A/((1-t)) + (Bt + C)/((1+t^2))`

On solving A = 1, B =1, C = 1

`int (2dt)/((1-t)(1+t^2)) = int (dt)/((1-t)) + int ((1+t))/((1+t^2)) dt`

`= int (dt)/((1-t)) + int (dt)/(1+t^2) + int (tdt)/((1+t^2))`

`= -In (1-t) + tan^(-1) t + 1/2 In (1+t^2)`

`= In sqrt(1+t^2)/(1-t) + tan^(-1) t + C`

Replacing the value of t

`= In sqrt(1+sin^2x)/(1-sinx) + tan^(-1)(sin x) + C`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Delhi Set 1

RELATED QUESTIONS

Integrate the rational function:

`1/(x^4 - 1)`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


`int sqrt(4^x(4^x + 4))  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×