English

∫3x+42x2+2x+1 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`

Sum

Solution

Let I = `int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`

Let 3x + 4 = `"A" "d"/("d"x)(2x^2 + 2x + 1) + "B"`

 ∴ 3x + 4 = A(4x + 2) + B

∴ 3x + 4 = 4Ax + 2A + B

By equating the coefficients on both sides, we get

4A = 3 and 2A + B = 4

∴ A = `3/4` and `2(3/4) + "B"` = 4

∴ B = `5/2`

∴ 3x + 4 = `3/4(4x + 2) + 5/2`

∴ I = `int (3/4(4x + 2) + 5/2)/sqrt(2x^2 + 2x + 1) "d"x`

= `3/4 int (4x + 2)/sqrt(2x^2 + 2x + 1)  "d"x + 5/2 int 1/sqrt(2x^2 + 2x + 1)  "d"x`

= I1 + I2             ........(i)

I1 = `3/4 int (4x + 2)/sqrt(2x^2 + 2x + 1)  "d"x`

 Put 2x2 + 2x + 1 = t

∴ (4x + 2) dx = dt

∴ I1 = `3/4 int "dt"/sqrt("t")`

= `3/4 int "t"^(1/2)  "dt"`

= `3/4("t"^(1/2)/(1/2)) + "c"_1`

= `3/2 sqrt("t") + "c"_1`

∴ I1 = `3/2 sqrt(2x^2 + 2x + 1) + "c"_1`    .........(ii)

I2 = `5/2 int 1/sqrt(2x^2 + 2x + 1)  "d"x`

= `5/2 int 1/sqrt(2(x^2 + x + 1/2))  "d"x`

`(1/2  "coefficient of"  x)^2 = (1/2 xx 1)^2`

= `1/4`

∴ I2 = `5/(2sqrt(2)) int 1/sqrt(x^2 + x + 1/4 - 1/4 + 1/2)  "d"x`

= `5/(2sqrt(2)) int 1/sqrt((x + 1/2)^2 - (1/2)^2)  "d"x`

= `5/(2sqrt(2)) log|x + 1/2 + sqrt((x + 1/2)^2 - (1/2)^2)| + "c"_2`

∴ I2 = `5/(2sqrt(2)) log|x + 1/2 + sqrt(x^2 + x + 1/2)| + "c"_2`    ........(iii)

From (i), (ii) and (iii), we get

I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt(2)) log|x + 1/2 + sqrt(x^2 + x + 1/2)| + "c"`,

where c = c1 + c2    

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

RELATED QUESTIONS

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


`int "dx"/(("x" - 8)("x" + 7))`=


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


`int x/((x - 1)^2 (x + 2)) "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


`int 1/(x^2 + 1)^2 dx` = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×