Advertisements
Advertisements
Question
Integrate the rational function:
`2/((1-x)(1+x^2))`
Solution
`2/((1 - x)(1 + x^2)) = A/(1 - x) = (Bx + C)/(1 + x^2)`
2 = A(1 + x2) + (1 - x) Bx + C
Put x = 1
2 = 2A + 0
⇒ A = 1
Put x = 0
2 = A + C
⇒ C = 1
Comparing the coefficients of x2 on both sides,
0 = A - B
⇒ B = A = 1
`therefore 2/((1 - x)(1 + x^2)) = 1/(1 - x) + (x + 1)/(1 + x^2)`
`= 1/(1 - x) + x/(1 + x^2) + 1/(1 + x^2)`
On integrating
`int 2/((1 - x)(1 + x^2)) dx`
`= int 1/(1 - x) dx + 1/2 int (2x)/(1 + x^2) dx + 1/(1 + x^2) dx`
`= - log abs (1 - x) + 1/2 log abs (1 + x^2) + tan^-1 x + C`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sin(logx) "d"x`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`