English

Integrate the following w.r.t.x: x2(x-1)(3x-1)(3x-2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`

Sum

Solution

Let I = `int x^2/((x - 1)(3x - 1)(3x - 2)).dx`

Let `x^2/((x - 1)(3x - 1)(3x - 2)) = "A"/(x - 1) + "B"/(3x -1) + "C"/(3x - 2)`

∴ x2 = A(3x -1)(3x - 2) + B(x – 1)(3x - 2) + C(x – 1)(3x -1)

Put x – 1 = 0, i.e. x = 1, we get

∴ x2 = A(2)(1) + B(0)(1) + C(0)(2)

∴ 2 = 4A

∴ A = `(1)/(2)`

Put x + 2 = 0, i.e. x = – 2, we get

2 + 2 = A(0)(1) + B(– 3)(1) + C(– 3)(0)

∴ 6 = – 3B

∴ B = – 2

Put x + 3 = 0, i.e. x = – 3we get

9 + 2 = A(– 1)(0) + B(– 4)(0) + C(– 4)(– 1)

∴ 11 = 4C

∴ C = `(11)/(4)`

∴ `(x^2 + 2)/((3x - 1)(x - 1)(3x - 2))`

= `((1/4))/(3x - 1) + (-2)/(x - 1) + ((11/4))/(3x - 2)`

∴ I = `int [((1/4))/(3x - 1) + (-2)/(x -  1) + ((11/4))/(3x - 2)].dx`

= `(1)/(18) int (1)/(3x - 1).dx - 2 int(1)/(x - 1).dx + (4)/(9) int (1)/(3x - 2).dx`

= `(1)/(18) log|3x - 1| + (1)/(2) log|x - 1| - (4)/(9) log|3x - 2| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.14 | Page 150

RELATED QUESTIONS

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×