English

Integrate the rational function: x(x2+1)(x-1) - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`x/((x^2+1)(x - 1))`

Sum

Solution

Let `x/((x^2 + 1)(x - 1)) = (Ax + B)/(x^2 + 1) + C/((x - 1))`

⇒ x = (A) (+ B)(x - 1) + C = `1/2`

Put x = 1

1 = 0 + 2C

⇒ C `= 1/2`

On comparing the coefficients of x2 or x

0 = A + C

⇒ A = `- 1/2`

and 1 = - A + B

⇒ B `= 1/2`

Hence, `int x/((x^2 + 1)(x - 1))  dx`

`= int (- 1/2  x + 1/2)/(x^2 + 1)  dx + 1/2 int 1/(x - 1)  dx`

`= -1/2 int (x - 1)/(x^2 + 1)  dx + 1/2  log abs (x - 1) + C`

`= 1/4 int (2x)/(x^2 + 1) + 1/2 int 1/(x^2 + 1)  dx + 1/2 log abs (x - 1) + C`

`= - 1/4  log abs (x^2 + 1) + 1/2  tan^-1 x + 1/2  log abs (x - 1) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 7 | Page 322

RELATED QUESTIONS

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


`int (xdx)/((x - 1)(x - 2))` equals:


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Evaluate `int x log x  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×