Advertisements
Advertisements
Question
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Solution
Let `x/((x^2 + 1)(x - 1)) = (Ax + B)/(x^2 + 1) + C/((x - 1))`
⇒ x = (A) (+ B)(x - 1) + C = `1/2`
Put x = 1
1 = 0 + 2C
⇒ C `= 1/2`
On comparing the coefficients of x2 or x
0 = A + C
⇒ A = `- 1/2`
and 1 = - A + B
⇒ B `= 1/2`
Hence, `int x/((x^2 + 1)(x - 1)) dx`
`= int (- 1/2 x + 1/2)/(x^2 + 1) dx + 1/2 int 1/(x - 1) dx`
`= -1/2 int (x - 1)/(x^2 + 1) dx + 1/2 log abs (x - 1) + C`
`= 1/4 int (2x)/(x^2 + 1) + 1/2 int 1/(x^2 + 1) dx + 1/2 log abs (x - 1) + C`
`= - 1/4 log abs (x^2 + 1) + 1/2 tan^-1 x + 1/2 log abs (x - 1) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int x log x "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`