Advertisements
Advertisements
Question
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Solution
Let I = `int (x^2"d"x)/(x^4 - x^2 - 12)`
= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`
= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`
= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
Put x2 = t for the purpose of partial fraction.
We get `"t"/(("t" - 4)("t" + 3))`
Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[where A and B are arbitrary constants]
`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`
⇒ t = At + 3A + Bt – 4B
Comparing the like terms, we get
A + B = 1 and 3A – 4B = 0
⇒ 3A = 4B
∴ A = `4/3 "B"`
Now `4/3 "B" + "B"` = 1
`7/3 "B"` = 1
∴ B = `3/7` and A = `4/3 xx 3/7 = 4/7`
So, A = `4/7` and B = `3/7`
∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`
= `4/7 int 1/(x^2 - 4) "d"x + 3/7 int 1/(x^2 + 3) "d"x`
= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2) "d"x`
= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1 x/sqrt(3)`
= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`
Hence, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`.
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`