English

Evaluate the following: d∫x2dxx4-x2-12 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`

Sum

Solution

Let I = `int (x^2"d"x)/(x^4 - x^2 - 12)`

= `int x^2/(x^4 - 4x^2 + 3x^2 - 12) "d"x`

= `int x^2/(x^2(x^2 - 4) + 3(x^2 - 4)) "d"x`

= `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

Put x2 = t for the purpose of partial fraction.

We get `"t"/(("t" - 4)("t" + 3))`

Let `"t"/(("t" - 4)("t" + 3)) = "A"/("t" - 4) + "B"/("t" + 3)` .....[where A and B are arbitrary constants]

`"t"/(("t" - 4)("t" + 3)) = ("A"("t" + 3) + "B"("t" - 4))/(("t" - 4)("t" + 3))`

⇒ t = At + 3A + Bt – 4B

Comparing the like terms, we get

A + B = 1 and 3A – 4B = 0

⇒ 3A = 4B

∴ A = `4/3 "B"`

Now `4/3 "B" + "B"` = 1

`7/3 "B"` = 1

∴ B = `3/7` and A = `4/3 xx 3/7 = 4/7`

So, A = `4/7` and B = `3/7`

∴ `int x^2/((x^2 - 4)(x^2 + 3)) "d"x`

= `4/7 int 1/(x^2 - 4)  "d"x + 3/7 int 1/(x^2 + 3)  "d"x`

= `4/7 int 1/(x^2 - (2)^2) "d"x + 3/7 int 1/(x^2 + (sqrt(3)^2)  "d"x`

= `4/7 xx 1/(2 xx 2) log|(x - 2)/(x + 2)| + 3/7 xx 1/sqrt(3) tan^-1  x/sqrt(3)`

= `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1 x/sqrt(3) + "C"`

Hence, I = `1/7 log |(x - 2)/(x + 2)| + sqrt(3)/7 tan^-1  x/sqrt(3) + "C"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 35 | Page 165

RELATED QUESTIONS

Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int x^7/(1 + x^4)^2  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


`int 1/(4x^2 - 20x + 17)  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×