Advertisements
Advertisements
Question
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Solution
Let I = `int (x + 7)/(x^2 + 4x + 7)dx`
On applying partial integration method
`x + 7 = "A" d/dx(x^2 + 4x + 7) + "B"`
x + 7 = A(2x + 4) + B
Then, A = `1/2` and B = 5
Then, I = `int(1/2(2x + 4) + 5)/(x^2 + 4x + 7)dx`
= `1/2 int ((2x + 4))/(x^2 + 4x + 7)dx + 5 int 1/((x^2 + 4x + 7))dx`
= `1/2 log |x^2 + 4x + 7| + 5 int 1/((x + 2)^2 + (sqrt(3))^2) dx + c`
= `1/2 log |x^2 + 4x + 7| + 5/sqrt(3) tan^-1((x + 2)/sqrt(3)) + c`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(2 + 3tanx)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int 1/(4x^2 - 20x + 17) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`