Advertisements
Advertisements
Question
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Solution
Let `(2x - 3)/((x^2 - 1)(2x + 3))`
`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`
`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`
⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1) .... (1)
Putting x = 1 in equation (1),
2(1) - 3 = A(1 + 1)(2 + 3)
⇒ -1 = A (2) (5)
⇒ A `= -1/10`
Putting x = -1 in equation (1),
-2 -3 = B (-1 -1)(-2 + 3)
⇒ -5 = B (-2)(1)
⇒ B `= 5/2`
Putting `x = -3/2` in equation (1),
-3 -3 = C `(-3/2 -1)(-3/2 + 1)`
⇒ -6 = C `(-5/2)(-1/2)`
⇒ C =`- 6 xx 4/5 = -24/5`
`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`
`therefore int (2x - 3)/((x^2 - 1)(2x+ 3)) dx = -1/10 int 1/(x - 1) dx + 5/2 int 1/(x + 1) dx -24/5 int 1/(2x + 3) dx`
` = - 1/10 log (x - 1) + 5/2 log (x + 1) - 24/5 log ((2x + 3)/2) + C`
`= 5/2 log (x + 1) - 1/10 log (x - 1) - 12/5 log (2x+ 3) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`