English

Integrate the rational function: 2x-3(x2-1)(2x+3) - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`

Sum

Solution

Let `(2x - 3)/((x^2 - 1)(2x + 3))`

`= (2x - 3)/((x - 1)(x + 1) (2x + 3))`

`= A/(x - 1) + B/(x + 1) + C/(2x + 3)`

⇒ 2x - 3 = A(x + 1)(2x + 3) + B(x - 1)(2x + 3) + C(x - 1)(x + 1)    .... (1)

Putting x = 1 in equation (1),

2(1) - 3 = A(1 + 1)(2 + 3)

⇒ -1 = A (2) (5)

⇒ A `= -1/10`

Putting x = -1 in equation (1),

-2 -3 = B (-1 -1)(-2 + 3)

⇒ -5 = B (-2)(1)

⇒ B `= 5/2`

Putting `x = -3/2` in equation (1),

-3 -3 = C `(-3/2 -1)(-3/2 + 1)`

⇒ -6 = C `(-5/2)(-1/2)`

⇒ C =`- 6 xx 4/5 = -24/5`

`therefore (2x - 3)/((x^2 - 1)(2x + 3)) = - 1/(10(x - 1)) + 5/(2(x + 1)) - 24/(5(2x + 3))`

`therefore int (2x - 3)/((x^2 - 1)(2x+ 3))  dx = -1/10 int 1/(x - 1)  dx + 5/2 int 1/(x + 1)  dx -24/5 int 1/(2x + 3)  dx`

` = - 1/10  log (x - 1) + 5/2  log (x + 1) - 24/5  log ((2x + 3)/2) + C`

`= 5/2  log (x + 1) - 1/10  log (x - 1) - 12/5  log (2x+ 3) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 10 | Page 322

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int 1/(x(x^3 - 1)) "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×