Advertisements
Advertisements
Question
`int ("d"x)/(x^3 - 1)`
Solution
Let I = `int ("d"x)/(x^3 - 1)`
= `int 1/((x - 1)(x^2 + x + 1)) "d"x`
Let `1/((x - 1)(x^2 + x + 1))`
= `"A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`
∴ 1 = A(x2 + x + 1) + (Bx + C)(x – 1) .......(i)
Putting x = 1 in (i), we get
1 = A(12 + 1 + 1)
∴ 1 = 3A
∴ A = `1/3`
Putting x = 0 in (i), we get
1 = A(0 + 0 + 1) + (0 + C)(0 – 1)
∴ 1 = A – C
∴ 1 = `1/3 - "C"`
∴ C = `- 2/3`
Putting x = 2 in (i), we get
1 = A(22 + 2 + 1) + (2B + C)(2 – 1)
∴ 1 = 7A + 2B + C
∴ 1 = `7/3 + 2"B" - 2/3`
∴ 1 = `5/3 + 2"B"`
∴ `(-2)/(3)` = 2B
∴ B = `-1/3`
∴ I = `int ((1/3)/(x - 1) + (-1/3x - 2/3)/(x^2 + x + 1)) "d"x`
= `1/3 int(1/(x - 1) - (x + 2)/(x^2 + x + 1)) "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/3 int (x + 2)/(x^2 + x + 1) "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/3*1/2 int (2x + 4)/(x^2 + x + 1) "d"x`
= `1/3 int 1/(x 1) "d"x - 1/6 int ((2x + 1) + 3)/(x^2 + x + 1)* "d"x`
= `1/3 int 1/(x - 1) "d"x - 1/6 int (2x + 1)/(x^2 + x + 1) "d"x - 1/2 int ("d"x)/(x^2 + x + 1)`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/(x^2 + x + 1/4 - 1/4 + 1)` ......`[∵ int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/((x + 1/2)^2 + (sqrt(3)/2)^2`
= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2* 1/(sqrt(3)/2) tan^-1 ((x + 1/2)/(sqrt(3)/2)) + "c"`
∴ I = `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/sqrt(3) tan^-1 ((2x + 1)/sqrt(3)) + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`