English

∫dxx3-1 - Mathematics and Statistics

Advertisements
Advertisements

Question

`int ("d"x)/(x^3 - 1)`

Sum

Solution

Let I = `int ("d"x)/(x^3 - 1)`

= `int 1/((x - 1)(x^2 + x + 1))  "d"x`

Let `1/((x - 1)(x^2 + x + 1))`

= `"A"/(x - 1) + ("B"x + "C")/(x^2 + x + 1)`

∴ 1 = A(x2 + x + 1) + (Bx + C)(x – 1)  .......(i)

Putting x = 1 in (i), we get

1 = A(12 + 1 + 1)

∴ 1 = 3A

∴  A = `1/3`

Putting x = 0 in (i), we get

1 = A(0 + 0 + 1) + (0 + C)(0 – 1)

∴ 1 = A – C

∴ 1 = `1/3 - "C"`

∴ C = `- 2/3`

Putting x = 2 in (i), we get

1 = A(22 + 2 + 1) + (2B + C)(2 – 1)

∴ 1 = 7A + 2B + C

∴ 1 = `7/3  + 2"B" - 2/3` 

∴ 1 = `5/3 + 2"B"`

∴ `(-2)/(3)` = 2B

∴ B = `-1/3`

∴ I = `int ((1/3)/(x - 1) + (-1/3x - 2/3)/(x^2 + x + 1))  "d"x`

= `1/3 int(1/(x - 1) - (x + 2)/(x^2 + x + 1))  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3 int (x + 2)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/3*1/2 int (2x + 4)/(x^2 + x + 1)  "d"x`

= `1/3 int 1/(x  1)  "d"x - 1/6 int ((2x + 1) + 3)/(x^2 + x + 1)*  "d"x`

= `1/3 int 1/(x - 1)  "d"x - 1/6 int (2x + 1)/(x^2 + x + 1)  "d"x - 1/2 int  ("d"x)/(x^2 + x + 1)`

= `1/3 log|x - 1| - 1/6 log|x^2 + x + 1| - 1/2 int ("d"x)/(x^2 + x + 1/4 - 1/4 + 1)`     ......`[∵  int ("f'"(x))/("f"(x))  "d"x = log|"f"(x)| + "c"]`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2 int ("d"x)/((x + 1/2)^2 + (sqrt(3)/2)^2`

= `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/2* 1/(sqrt(3)/2) tan^-1 ((x + 1/2)/(sqrt(3)/2)) + "c"`

∴ I = `1/3  log|x - 1| - 1/6  log|x^2 + x + 1| - 1/sqrt(3) tan^-1 ((2x + 1)/sqrt(3)) + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×