Advertisements
Advertisements
Question
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Solution
Let I = `int 1/("x"("x"^"n" + 1))` dx
∴ I = `int "x"^"n - 1"/("x"^"n - 1" xx "x"("x"^"n" + 1))` dx
∴ I = `int "x"^"n - 1"/("x"^"n" ("x"^"n" + 1))` dx
Put xn = t
∴ `"n""x"^"n - 1" "dx" = "dt"`
∴ `"x"^"n - 1" "dx" = "dt"/"n"`
∴ I = `int 1/("t"("t + 1")) * "dt"/"n"`
Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`
∴ 1 = A(t + 1) + Bt ....(i)
Putting t = –1 in (i), we get
1 = A(0) + B(- 1)
∴ 1 = - B
∴ B = - 1
Putting t = 0 in (i), we get
1 = A(1) + B(0)
∴ A = 1
∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`
∴ I = `1/"n" int (1/"t" + (-1)/"t + 1")` dt
`= 1/"n" [int 1/"t" "dt" - int 1/("t + 1") "dt"]`
`= 1/"n" [log |"t"| - log |"t" + 1|]` + c
`= 1/"n" log |"t"/"t + 1"|` + c
∴ I = `1/"n" log |"x"^"n"/("x"^"n" + 1)|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int 1/(4x^2 - 20x + 17) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)