Advertisements
Advertisements
Question
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Solution
Let I = `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x"^2 + 2"x" + 1))` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x + 1")^2)` dx
Let `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = "A"/"x" + "B"/"x + 1" + "C"/("x + 1")^2`
∴ 5x2 + 20x + 6 = A(x + 1)2 + B(x + 1)x + Cx ...(i)
Putting x = 0 in (i), we get
5(0) + 20(0) + 6 = A(1)2 + B(1)(0) + C(0)
∴ A = 6
Putting x = - 1 in (i), we get
5 (1) + 20(- 1) + 6 = A (0)+ B (0) (- 1) + C (-1)
∴ - 9 = - C
∴ C = 9
Putting x = 1 in (i), we get
5 (1) + 20 (1) + 6 = A (2)2 + B (2) (1) + C (1)
∴ 31 = 4A + 2B + C
∴ 31 = 4(6) + 2B + 9
∴ B = - 1
∴ `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = 6/"x" + (-1)/"x + 1" + 9/("x + 1")^2`
∴ I = `int [6/"x" + (- 1)/"x + 1" + 9/("x + 1")^2]` dx
`= 6 int 1/"x" "dx" - int 1/"x + 1" "dx" + 9 int ("x + 1")^-2` dx
`= 6 log |"x"| - log |"x + 1"| + 9("x + 1")^-1/(-1)` + c
∴ I = `6 log |"x"| - log |"x + 1"| - 9/("x + 1")` + c
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x sin2x cos5x "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.