Advertisements
Advertisements
Question
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Solution
Let I = `(1)/(sinx*(3 + 2cosx))*dx`
= `int sinx/(sin^2x*(3 + 2cosx))*dx`
= `int sinx/((1 - cos^2x)(3 + 2cosx))*dx`
= `int sinx/((1 - cosx)(1 + cosx)(3 + 2cosx))*dx`
Put cos x = t
∴ – sinx.dx = dt
∴ sinx.dx = – dt
∴ I = `int (1)/((1 - t)(1 + t)(3 + 2t))*(-dt)`
= `int (-1)/((1 - t)(1 + t)(3 + 2t))*dt`
Let `(-1)/((1 - t)(1 + t)(3 + 2t)) = "A"/(1 - t) + "B"/(1 + t) + "C"/(3 + 2t)`
∴ – 1 = A(1 + t)(3 + 2t) + B(1 - t)(3 + 2t) + C(1 - t)(1 + t)
Put 1 – t = 0, i.e. t = 1, we get
– 1 = A(2)(5) + B(0)(5) + C(0)(2)
∴ – 1 = 10A
∴ A = `(-1)/(10)`
Put 1 + t = 0, i.e. t = – 1, we get
– 1 = A(0)(1) + B(2)(1) + C(2)(0)
∴ – 1 = 2B
∴ B = `-(1)/(2)`
Put 3 + 2t = 0, i.e. t = `-(3)/(2)`, we get
– 1 = `"A"(-1/2)(0) + "B"(5/2)(0) + "C"(5/2)(-1/2)`
∴ – 1 = `-(5)/(4)"C"`
∴ C = `(4)/(5)`
∴ `(-1)/((1 - t)(1 + t)(3 + 2t)) = (((-1)/(10)))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)`
∴ I = `int [(((-1)/10))/(1 - t) + ((-1/2))/(1 + t) + ((4/5))/(3 + 2t)]*dt`
= `-(1)/(10) int 1/(1 - t)*dt - (1)/(2) int 1/(1 + t)*dt + (4)/(5) int 1/(3 + 2t)*dt`
= `-(1)/(10) (log|1 - t|)/(-1) - (1)/(2) log | 1 + t| + 4/5 (log|3 + 2t|)/(2) + c`
= `(1)/(10)log|1 - cosx| - (1)/(2)log|1 + cosx| + (2)/(5)log|3 + 2cos| + c`.
APPEARS IN
RELATED QUESTIONS
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (xdx)/((x - 1)(x - 2))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int x/((x - 1)^2 (x + 2)) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`