Advertisements
Advertisements
Question
`int "dx"/(("x" - 8)("x" + 7))`=
Options
`1/15 log |("x" + 2)/("x" - 1)| + "c"`
`1/15 log |("x" + 8)/("x" + 7)| + "c"`
`1/15 log |("x"- 8)/("x" + 7)| + "c"`
(x − 8)(x − 7) + c
`1/15 log |("x" + 2)/("x"+ 1)| + "c"`
(x − 8)(x + 7) + c
Solution
`bb(1/15 log |("x"- 8)/("x" + 7)| + "c")`
Explanation:
I = `int "A"/("x" - 8) + "B"/("x" + 7)"dx"`
1 = A(x + 7) + B(x − 8)
When x = 8, A = `1/15` and x = −7, B = `(-1)/15`
∴ I = `int 1/15 (1/("x" - 8)) "dx" + int (-1)/15 (1/("x "+ 7)) "dx"`
= `int 1/15 log ("x" - 8)"dx" - int 1/15 log ("x" + 7)`
= `int 1/15 {log (("x" - 8)/("x" + 7))} + "c"`
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int x^7/(1 + x^4)^2 "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`