Advertisements
Advertisements
Question
Integrate the rational function:
`1/(x^2 - 9)`
Solution
Let `1/(x^2 - 9) = 1/((x - 3)(x + 3))`
`= A/(x - 3) + B/(x + 3)`
⇒ 1 ≡ A(x + 3) + B(x - 3)
Put x = 3
1 = A (3 + 3)
⇒ A `= 1/6`
again, put x = -3
1 = B(3 - 3)
⇒ B `= -1/6`
`therefore 1/(x^2 - 9) = 1/6 [1/(x - 3) - 1/(x + 3)]`
`=> int 1/(x^2 - 9) = 1/6 int (1/(x - 3) - 1/(x + 3))` dx
`= 1/6 [log abs (x - 3) - log abs (x + 3)] + C`
`= 1/6 log abs ((x - 3)/(x + 3)) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`