Advertisements
Advertisements
Question
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Solution
Let I = `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Let `"3x - 2"/(("x + 1")^2("x + 3")) = "A"/"x + 1" + "B"/("x + 1")^2 + "C"/("x + 3")`
∴ 3x - 2 = (x + 3) [A(x + 1) + B] + C(x + 1)2 ....(i)
Putting x = - 1 in (i), we get
3(- 1) - 2 = (–1 + 3)[A(0) + B] + C(0)
∴ - 5 = 2B
∴ B = -`5/2`
Putting x = - 3 in (i), we get
3(- 3)-2 = 0[A(–3 + 1) + B] + C(–2)2
∴ - 11 = 4C
∴ C = - `11/4`
Putting x = 0 in (i), we get
3(0)- 2 = 3[A(0 + 1) + B] + C(0 + 1)2
∴ - 2 = 3A + 3B + C
∴ - 2 = 3A + 3`(- 5/2) - 11/4`
∴ 3A = –2 + `15/2 + 11/4 = (- 8 + 30 11)/4 = 33/4`
∴ A = `33/4 xx 1/3 = 11/4`
∴ `"3x - 2"/(("x + 1")^2("x + 3")) = (11/4)/"x + 1" + (- 5/2)/("x + 1")^2 + (- 11/4)/"x + 3"`
∴ I = `int ((11/4)/"x + 1" - (5/2)/("x + 1")^2 - ( 11/4)/"x + 3")` dx
`= 11/4 int "dx"/"x + 1" - 5/2 int ("x + 1")^-2 "dx" - 11/4 int "dx"/"x + 3"`
`= 11/4 log |"x + 1"| - 5/2 (- 1/"x + 1") - 11/4 log |"x + 3"|` + c
`= 11/4 [log |"x" + 1| - log |"x" + 3|] + 5/(2("x" + 1))` + c
∴ I = `11/4 log |("x + 1")/("x + 3")| + 5/(2("x + 1"))` + c
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int x^7/(1 + x^4)^2 "d"x`
`int sec^3x "d"x`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`