Advertisements
Advertisements
Question
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Solution
Let I = `int 1/("x"("x"^5 + 1))` dx
∴ I = `int "x"^4/("x"^5("x"^5 + 1))` dx
Put x5 = t
∴ `5"x"^4 "dx" = "dt"`
∴ `"x"^4 "dx" = "dt"/5`
∴ I = `int 1/("t"("t + 1")) * "dt"/5`
Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`
∴ 1 = A(t + 1) + Bt ....(i)
Putting t = –1 in (i), we get
1 = A(0) + B(- 1)
∴ 1 = - B
∴ B = - 1
Putting t = 0 in (i), we get
1 = A(1) + B(0)
∴ A = 1
∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`
∴ I = `1/5 int (1/"t" + (-1)/"t + 1")` dt
`= 1/5 [int 1/"t" "dt" - int 1/("t + 1") "dt"]`
`= 1/5 [log |"t"| - log |"t" + 1|]` + c
`= 1/5 log |"t"/"t + 1"|` + c
∴ I = `1/5 log |"x"^5/("x"^5 + 1)|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int 1/(x(x^3 - 1)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`