English

Integrate the following w.r.t. x : 5x2+20x+6x3+2x2+x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : 5x2+20x+6x3+2x2+x

Sum

Solution

Let I = 5x2+20x+6x3+2x2+xdx

= 5x2+20x+6x(x2+2x+1)dx

= 5x2+20x+6x(x+1)2dx

Let 5x2+20x+6x(x+1)2=Ax+Bx+1+C(x+1)2

∴ 5x2 + 20x + 6  = A(x + 1)2 + Bx(x + 1) + Cx
Put x = 0, we get
0 + 0 + 6 = A(1) + B(0)(1) + C(0)
∴ A = 6
Put x + 1 = 0, i  x = – 1, we get
5(1) + 20(– 1) + 6 = A(0) + B(– 1)(0) + C(– 1)
∴ – 9 = – C
∴ C = 9
Put x = 1, we get
5(1) + 20(1) + 6 = A(4) + B(1)(2) + C(1)
But A = 6 and C = 9
∴ 31 = 24 + 2B + 9
∴ B = – 1

5x2+20x+6x(x+1)2=6x-1x+1+9(x+1)2

∴ I = [6x-1x+1+9(x+1)2]dx

= 61xdx-1x+1dx+9(x+1)-2dx

= 6log|x|-log|x+1|+9(x+1)-1-1+c

= log|x6|-log|x+1|-9(x+1)+c

= log|x6x+1|-9(x+1)+c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.4 [Page 145]

APPEARS IN

RELATED QUESTIONS

Find : x2x4+x2-2dx


Evaluate:

x2x4+x2-2dx


Evaluate: 8(x+2)(x2+4)dx 


Integrate the rational function:

1x2-9


Integrate the rational function:

3x-1(x-1)(x-2)(x-3)


Integrate the rational function:

x(x-1)(x-2)(x-3)


Integrate the rational function:

x(x-1)2(x+2)


Integrate the rational function:

3x+5x3-x2-x+1


Integrate the rational function:

2x-3(x2-1)(2x+3)


Integrate the rational function:

5x(x+1)(x2-4)


Integrate the rational function:

1x(xn+1) [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

(x2+1)(x2+2)(x2+3)(x2+4)


Integrate the rational function:

1ex-1[Hint: Put ex = t]


dxx(x2+1) equals:


Find exdx(ex-1)2(ex+2)


Integrate the following w.r.t. x : x2(x2+1)(x2-2)(x2+3)


Integrate the following w.r.t. x : 2x4-3x-x2


Integrate the following w.r.t. x:

6x3+5x2-73x2-2x-1


Integrate the following w.r.t. x : 1sinx+sin2x


Choose the correct options from the given alternatives :

If tan3xsec3xdx=(1m)secmx-(1n)secnx+c,then(m,n) =


Integrate the following w.r.t. x: x2+3(x2-1)(x2-2)


Integrate the following with respect to the respective variable : cot-1(1+sinxcosx)


Integrate the following w.r.t.x : 12cosx+3sinx


Evaluate: 2x+1x(x - 1)(x - 4) dx


Evaluate: x2+x-1x2+x-6 dx


Evaluate: 3x - 2(x + 1)2(x + 3) dx


For x - 1(x + 1)3 exdx=ex f(x) + c, f(x) = (x + 1)2.


Evaluate: 1+logxx(3+logx)(2+3logx) dx


e3logx(x4+1)-1dx


x7(1+x4)2 dx


x2a2-x6 dx


1x(x3-1)dx


(x2+2)x2+1ax+tan-1xdx


14x2-20x+17 dx


sinxsin3x dx


sec3x dx


sin(logx) dx


sec2xtan2x+tanx-7 dx


esin-1x[x+1-x21-x2]dx


ex(1+x2)(1+x)2 dx


x2+x-1x2+x-6 dx


xsin2xcos5x dx


x+sinx1-cosx dx


 x2(x2+1)(x2-2)(x2+3) dx


1sinx(3+2cosx) dx


3e2x+54e2x-5 dx


 (2logx+3)x(3logx+2)[(logx)2+1] dx


Choose the correct alternative:

1+x dx =


5(x6+1)x2+1dx = x5 – ______ x3 + 5x + c


If f'(x) = 1x+x and f(1) = 52, then f(x) = log x + x22 + ______ + c


Evaluate xlogx dx


x(x-1)2(x+2)dx


14x2-20x+17 dx


If sin2xsin5x sin3xdx=13log|sin3x|-15log|f(x)|+c, then f(x) = ______


If x-7x-9dx=Ax2-16x+63+log|x-8+x2-16x+63|+c, then A = ______


Verify the following using the concept of integration as an antiderivative

x3dxx+1=x-x22+x33-log|x+1|+C


Evaluate the following:

x21-x4dx put x2 = t


Evaluate the following:

x2dx(x2+a2)(x2+b2)


Evaluate the following:

0π xdx1+sinx


Evaluate the following:

e-3xcos3x dx


Evaluate: dx2+cosx-sinx


If x-5x-7dx=Ax2-12x+35+log|x|-6+x2-12x+35+C, then A = ______.


Find: x4(x-1)(x2+1)dx.


Find : 2x2+3x2(x2+9)dx;x0.


Evaluate5x2-6x+32x-3dx


Evaluate.

5x2-6x+32x-3dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.