Advertisements
Advertisements
Question
`int 1/(4x^2 - 20x + 17) "d"x`
Solution
Let I = `int 1/(4x^2 - 20x + 17) "d"x`
= `1/4int 1/(x^2 - 5x + 17/4) "d"x`
= `1/4int 1/(x^2 - 2. 5/2*x + 25/4 - 25/4 + 17/4) "d"x`
= `1/4int 1/((x - 5/2)^2 - 8/4) "d"x`
= `1/4int 1/((x - 5/2)^2 - (sqrt(2))^2) "d"x`
= `1/4 xx 1/(2sqrt(2)) log |(x - 5/2 - sqrt(2))/(x - 5/2 + sqrt(2))| + "c"`
∴ I = `1/(8sqrt(2)) log |(2x - 5 - 2sqrt(2))/(2x - 5 + 2sqrt(2))| + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int (sinx)/(sin3x) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`