Advertisements
Advertisements
Question
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Solution
2
APPEARS IN
RELATED QUESTIONS
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`