Advertisements
Advertisements
Question
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Solution
1 + log x = t
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int log ("x"^2 + "x")` dx
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
Write `int cotx dx`.
Evaluate `int 1/(x(x-1))dx`