Advertisements
Advertisements
Question
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Solution
Let I = `int (5x^2 - 6x + 3)/(2x − 3)` dx
We perform actual division and express the result as:
`"Dividend"/"Divisor" = "Quotient" + "Remainder"/"Divisor"`
`(5x)/2 + 3/4`
`2x - 3)overline(5x^2 - 6x + 3)`
`- 5x^2 - 15/2x`
(−) (+)
`(3x)/2 + 3`
`- (3x)/2 - 9/4`
(−) (+)
`21/4`
∴ I = `int ((5x)/2 + 3/4 + (21/4)/(2x - 3))` dx
∴ I = `5/2 int x "dx" + 3/4 int "dx" + 21/4 int 1/(2x - 3) "dx"`
∴ I = `5/2 * "x"^2/2 + 3/4"x" + 21/4 * (log |2"x" - 3|)/2 + c`
∴ I = `(5x^2)/4 + (3x)/4 + 21/8 log |2"x" - 3| + c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int (log x)/(log ex)^2` dx = _________
`int (7x + 9)^13 "d"x` ______ + c
`int (cos x)/(1 - sin x) "dx" =` ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int1/(x(x - 1))dx`
`int "cosec"^4x dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`