Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Solution
Let I = `int 1/(4"x"^2 - 20"x" + 17)` dx
= `1/4 int 1/("x"^2 - 5"x" + 17/4)` dx
= `1/4 int 1/("x"^2 - 2 * 5/2 "x" + 25/4 - 25/4 + 17/4)` dx
= `1/4 int 1/(("x" - 5/2)^2 - 8/4)` dx
= `1/4 int 1/(("x" - 5/2)^2 - (sqrt2)^2)` dx
= `1/4 xx 1/(2sqrt2) log |("x" - 5/2 - sqrt2)/("x" - 5/2 + sqrt2)|` + c
∴ I = `1/(8sqrt2) log |(2"x" - 5 - 2sqrt2)/(2"x" - 5 + 2sqrt2)|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`