Advertisements
Advertisements
Question
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Solution
Let I = `int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Put e3x + 1 = t
Differentiating w.r.t. x, we get
3e3xdx = dt
∴ e3xdx = `"dt"/3`
∴ I = `int 1/"t"* "dt"/3 = 1/3 log |"t"| + "c"`
∴ I `1/3 log|"e"^(3x) + 1| + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int logx/x "d"x`
`int (cos2x)/(sin^2x) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`