English

Evaluate: ∫tanxsinxcosxdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`

Sum

Solution 1

`I = int sqrt(tanx)/[sinx.cosx]` dx

Dividing numerator and denominator by cosx.

= `int [sqrt(tanx)/cosx]/[(sinxcosx)/(cosx)]` dx

= `int [sqrt(tan x)(1/cosx)]/[(sinx/cosx).cosx]` dx

= `int [sqrt(tan x)]/[sinx/cosx](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](sec^2x)` dx

Put, tan x = t
       Sec2x dx = dt

= `int 1/sqrtt dt`

= 2`tan^(1/2) + c`

= 2`sqrttanx` + c    

shaalaa.com

Solution 2

Given,
`I = int sqrt(tanx)/[sinx.cosx]` dx
 
simplifying the function
 
`= int sqrt(tanx)/[sinx.cosx. (cosx)/(cosx)]` dx
 
`= int sqrt(tanx)/[sinx.(cos^2x)/(cosx)` dx
 
`= int sqrt(tanx)/[cos^2x. (sinx)/(cosx)]` dx
 
`= int sqrt(tanx)/[cos^2x. tanx]` dx
 
`= int [sqrt(tanx).(tan x)^(-1)]/[cos^2x]` dx
 
`= int [(tanx)^(1/2 -1)]/[cos^2x]` dx
 
`= int [(tanx)^(-1/2)]/[cos^2x]` dx
 
`= int (tanx)^(-1/2). 1/[cos^2x]` dx
 
`= int (tanx)^(-1/2). sec^2x` dx
 
Let tan x = t
So, sec2x = `(dt)/(dx)`
 
⇒ dx = `(dt)/(sec^2x)`
 
∴ `int (tanx)^(−1/2).sec^2x` dx
 
= `int(t)^(−1/2).sec^2x. (dt)/(sec^2x)`​
 
= `int(t)^(−1/2)` dt
 
= `(t^(-1/2) + 1)/(-1/2 + 1) + C   ...{as int x^n dx = (x^(n + 1))/(n + 1) + C}`
 
= `t^(1/2)/(1/2) + C`
 
= `2t^(1/2) + C`   
 
= `2sqrt(t) + C`
 
Substituting t = tan x
 
= `2sqrt(tanx) + C`
shaalaa.com
  Is there an error in this question or solution?
2016-2017 (July)

APPEARS IN

RELATED QUESTIONS

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(1 + cot x)`


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int x/(x + 2)  "d"x`


`int cos^7 x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int(5x + 2)/(3x - 4) dx` = ______


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×