English

The Value of ∫ Cos √ X √ X D X is - Mathematics

Advertisements
Advertisements

Question

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is

Options

  • 2 cos \[\sqrt{x}\]

  • \[\sqrt{\frac{\cos x}{x}} + C\]

  • sin \[\sqrt{x} + C\]

  • 2 sin \[\sqrt{x} + C\]

MCQ

Solution

2 sin \[\sqrt{x} + C\]

 

\[\text{Let }I = \int\frac{\cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Putting }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int\cos t \cdot dt\]
\[ = 2 \sin t + C\]
\[ = 2 \sin \sqrt{x} + C ..................\left(\because t = \sqrt{x} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 13 | Page 200

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Evaluate the following : `int sinx/(sin 3x).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(1 + sin2x)  "d"x`


`int logx/x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×