Advertisements
Advertisements
Question
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Solution
Let I = `int 1/(cos^4x+sin^4x) dx`
Divide numerator and denominator by cos4x, we get:
`int [sec^4x]/[1 + tan^4x]` dx
`int [sec^2 x(sec^2x)]/[ 1 + tan^4x ]` dx
`int [sec^2 x( 1 + tan^2 x)]/( 1 + tan^4x )`dx
Putting tan x = t,
Sec2x dx = dt
I = `int ( 1 + t^2)/(1+ t^4) dt`
Dividing the numerator and denominator by t2, we get:
I = `int [ 1 + t^(1/2) ]/[ t^(1/2) + t^2 ]`
I = `int [ 1 + 1/t^2]/[(t - 1/t)^2 + 2]` dt
Let t - `1/t` = u
`1 + 1/t^2 = (du)/dt`
`( 1 + 1/t^2) dt = du`
I = `1/sqrt2 tan^-1 (u/sqrt2) + C`
I = `1/sqrt2 tan^-1 (( t - 1/t )/sqrt2) + C`
I = `1/sqrt2 tan^-1 ((t^2 - 1)/(sqrt2t)) + C`
I = `1/sqrt2 tan^-1 ( tan^2x - 1)/(sqrt2tan x ) + C`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
cot x log sin x
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int(5x + 2)/(3x - 4) dx` = ______
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`