English

Integrate the following functions w.r.t. x : sinxcos3x1+cos2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`

Sum

Solution

Let I = `int (sinx cos^3x)/(1 + cos^2x).dx`

Put cos x = t
∴ – sin x dx = dt
∴ sin x dx = – dt

I = `- int t^3/(t^2 + 1)dt`

= `- int (t(t^2 + 1) - t)/(t^2 + 1)dt`

= `- int[(t(t^2 + 1))/(t^2 + 1) - t/(t^2 + 1)]dt`

= `- int t dt + int t/(t^2 + 1)dt`

= `- int t dt + (1)/(2) int (2t)/(t^2 + 1)dt`

= `t^2/(2) + (1)/(2)log|t^2 + 1| + c`

... `[∵ d/dt(t^2 + 1) = 2t and int (f'(x))/f(x)dx = log [f(x)] + c]`

= `-(1)/(2) cos^2x + (1)/(2)log|cos^2x + 1| + c`

= `(1)/(2)[log|cos^2x + 1| - cos^2x] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int x^x (1 + logx)  "d"x`


`int cos^7 x  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int1/(x(x-1))dx` 


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×