Advertisements
Advertisements
Question
Integrate the functions:
sec2(7 – 4x)
Solution
Let `I = int sec^2` (7 - 4x) dx
Put 7 - 4x = t
- 4 dx = dt or dx `= - 1/4` dt
Hence, `I = - 1/4 int sec^2` t dt
`= - 1/4` tan t + C
`= - 1/4` tan (7 - 4x) + C
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x/(9 - 4x^2)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int x^3"e"^(x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`