Advertisements
Advertisements
Question
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Solution
Let I = `int 1/sqrt("x"^2 + "a"^2) "dx"`
Put x = a tan θ ⇒ tan θ = `"x"/"a"`
∴ dx = a sec2 θ dθ
∴ I = `int 1/ sqrt("a"^2 "tan"^2 theta +"a"^2) "a" "sec"^2 theta "d" theta`
= `int ("a"."sec"^2 theta)/("a" sqrt(1+"tan"^2 theta)) "d"theta`
= `int ("sec"^2 theta)/("sec" theta) "d"theta `
`= int "sec" theta . "d" theta`
`= "log" |"sec" theta +"tan" theta| +"c"_1`
`= "log" |"x"/"a" + sqrt("sec"^2 theta)| + "c"_1`
`= "log" | "x"/"a" + sqrt 1+ "tan"^2 theta | + "c"_1`
=`"log" |"x" /"a" +sqrt(1+"x"^2/"a"^2)| +"c"_1`
=` "log" |"x"/"a" + sqrt( "a"^2 + "x"^2)/"a"| + "c"_1`
`= "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c"_1`
`therefore int 1/sqrt("x"^2 + "a"^2) "dx" = "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c" ,`
where c = - log a +c1
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int dx/(1 + e^-x)` = ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`