English

A Rod of 108 Meters Long is Bent to Form a Rectangle - Mathematics and Statistics

Advertisements
Advertisements

Question

 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 

Sum

Solution

∴ 2x + 2y = 108 

∴ y = 54 - x

Now, area of rectangle  = xy =x (54 - x)

∴ f(x) = 54x -x2

f ' (x) = 54 -2x

f '' (x) = -2 

For extreme values  f '( x) = 0

∴ 54 - 2x = 0

∴ x = 27

f '' (27) = -2 < 0 ∴ Area is maximum when x =27 , y = 27

  ∴ The dimensions of rectangle are 27m × 27m 
It is a square. 

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Prove that the following function do not have maxima or minima:

f(x) = ex


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


Find the maximum area of an isosceles triangle inscribed in the ellipse  `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = x log x


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


If y = x3 + x2 + x + 1, then y ____________.


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Find the maximum and the minimum values of the function f(x) = x2ex.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×