English

Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5

Sum

Solution

f(x) = x3 − 3x2 − 24x + 5

∴ f′(x) = 3x2 – 6x – 24

∴ f''(x) = 6x − 6

Consider, f′(x) = 0

∴ 3x2 – 6x – 24 = 0

∴ 3(x2 – 2x – 8) = 0

∴ x2 – 2x – 8 = 0

∴ (x + 2)(x – 4) = 0

∴ x + 2 = 0 or x – 4 = 0

∴ x = – 2 or x = 4

For x = – 2,

f ''(– 2) = 6(– 2) − 6

= −18 < 0

∴ f(x) is maximum at x = – 2.

∴ Maximum value = f(–2) = (–2)3 − 3(–2)2 – 24(–2) + 5

= – 8 – 12 + 48 + 5

= 33

For x = 4,

f''(4) = 6(4) − 6

= 18 > 0

∴ f(x) is minimum at x = 4.

∴ Minimum value =  f(4) = (4)3 − 3 (4)2 – 24 (4) + 5

= 64 − 48 – 96 + 5

= −75

∴ Local maximum of f(x) is 33 when x = – 2 and Local minimum of f(x) is −75 when x = 4.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.2: Applications of Derivatives - Long Answers III

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Divide the number 30 into two parts such that their product is maximum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Determine the maximum and minimum value of the following function.

f(x) = x log x


Determine the maximum and minimum value of the following function.

f(x) = `x^2 + 16/x`


Divide the number 20 into two parts such that their product is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


The function f(x) = x log x is minimum at x = ______.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The function y = 1 + sin x is maximum, when x = ______ 


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of sin x . cos x is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


If y = x3 + x2 + x + 1, then y ____________.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


If x + y = 8, then the maximum value of x2y is ______.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×