Advertisements
Advertisements
Questions
Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.
A cone of maximum volume is inscribed in a given sphere. Then prove that ratio of the height of the cone to the diameter of the sphere is equal to `2/3`.
Solution
\[\text{Let h, r and R be the height, radius of base of the cone and radius of the sphere, respectively. Then},\]
\[h = R + \sqrt{R^2 - r^2}\]
\[\Rightarrow\left( h - R \right)^2 = R^2 - r^2\]
\[\Rightarrow h^2 + R^2 - 2hr = R^2 - r^2\]
\[\Rightarrow r^2 = 2hR - h^2 ........\left(1 \right)\]
\[\text{Volume of cone} = \frac{1}{3}\pi r^2 h\]
\[\Rightarrow V = \frac{1}{3}\pi h\left(2hR - h^2 \right) .............\left[\text {From equation}\left( 1 \right) \right]\]
\[\Rightarrow V = \frac{1}{3}\pi\left(2 h^2 R - h^3 \right)\]
\[\Rightarrow \frac{dV}{dh} = \frac{\pi}{3}\left(4hR - 3 h^2 \right)\]
\[\text{For maximum or minimum values of V, we must have}\]
\[\frac{dV}{dh} = 0\]
\[\Rightarrow \frac{\pi}{3}\left( 4hR - 3 h^2\right) = 0\]
\[\Rightarrow 4hR = 3 h^2 \]
\[\Rightarrow h = \frac{4R}{3}\]
\[\text{Substituting the value of y in equation} \left(1 \right),\text {we get}\]
\[x^2 = 4\left( r^2 - \left(\frac{r}{\sqrt{2}} \right)^2\right)\]
\[\Rightarrow x^2 = 4\left(r^2 - \frac{r^2}{2}\right)\]
\[\Rightarrow x^2 = 4\left(\frac{r^2}{2}\right)\]
\[\Rightarrow x^2 = 2 r^2\]
\[\Rightarrow x = r\sqrt{2}\]
\[\text{Now,}\]
\[\frac{d^2 V}{d h^2} = \frac{\pi}{3}\left(4R - 6h \right)\]
\[\Rightarrow \frac{d^2 V}{d h^2} = \frac{\pi}{3}\left( 4R - 6 \times \frac{4R}{3} \right)\]
\[\Rightarrow \frac{d^2 V}{d h^2} = \frac{- 4\pi R}{3} < 0\]
\[\text{So, the volume is maximum when h} = \frac{4R}{3}.\]
\[\Rightarrow h = \frac{2}{3}\left( \text {Diameter of sphere}\right)\]
\[\text{Hence proved}.\]
RELATED QUESTIONS
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = sinx − cos x, 0 < x < 2π
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
Prove that the following function do not have maxima or minima:
f(x) = ex
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
What is the maximum value of the function sin x + cos x?
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Divide the number 30 into two parts such that their product is maximum.
Divide the number 20 into two parts such that sum of their squares is minimum.
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
Divide the number 20 into two parts such that their product is maximum.
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
If f(x) = x.log.x then its maximum value is ______.
A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum
A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.
Solution: Let the dimensions of the rectangle be x cm and y cm.
∴ 2x + 2y = 36
Let f(x) be the area of rectangle in terms of x, then
f(x) = `square`
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme value, f'(x) = 0, we get
x = `square`
∴ f''`(square)` = – 2 < 0
∴ Area is maximum when x = `square`, y = `square`
∴ Dimensions of rectangle are `square`
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.
Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.
Find the area of the largest isosceles triangle having a perimeter of 18 meters.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
Range of projectile will be maximum when angle of projectile is
The maximum value of the function f(x) = `logx/x` is ______.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.
The minimum value of 2sinx + 2cosx is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.
A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
Find the maximum and the minimum values of the function f(x) = x2ex.
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`