English

Examine the maxima and minima of the function f(x) = 2x^3 - 21x^2 + 36x - 20 . Also, find the maximum and minimum values of f(x). - Mathematics and Statistics

Advertisements
Advertisements

Questions

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 

Find the maximum and minimum value of the function:

f(x) = 2x3 - 21x2 + 36x - 20

Solution 1

`f(x)=2x^3-21x^2+36x-20`

`f^'(x)=6x^2-42x+36`

For finding critical points, we take f'(x)=0

`therefore 6x^2-42x+36=0`

`x^2-7x+6=0`

 (x-6)(x-1)=0

For finding the maxima and minima, find f''(x)

f'(x)=12x-42

for x=6

f''(6)=30>0

Minima

for x=1

f''(1)=-30<0

Maxima

Maximum values of f(x) for x=1

f(1)=-3

minimum values of f(x) for x=6

f(6)=-128

∴ the maximum values of the function is -3 and the minimum value of the function is -128.

shaalaa.com

Solution 2

f(x) = 2x3 - 21x2 + 36x - 20

∴ f'(x) = `2(3x^2) - 21(2x) + 36(1) - 1`

`= 6x^2 - 42x + 36 = 6(x^2 - 7x + 6)`

= 6(x - 1)(x - 6)

f has a maxima/minima if f'(x) = 0

i.e if 6(x - 1)(x-6) = 0

i.e if x - 1= 0   or x - 6 = 0

i.e if x = 0 or x = 6

Now f"(x) = 6(2x) - 42(1) = 12x - 42

∴ f"(1) = 12(1) - 42 = -30

∴ f"(1) < 0

Hence, f has a maximum at x = 1, by the second derivative test.

Also f"(6) = 12(6)- 42 = 30

∴ f"(6) > 0

Hence, f has a minimum at x = 6, by the second derivative test.

Now, the maximum value of f at 1,

`f(1) = 2(1^3) - 21(1^2) + 36(1) - 20`

= 2-21+36-20 = -3

and minimum value of f at x = 6

`f(6) = 2(6^3) - 21(6^2) + 36(1) - 20`

= 432 - 756 + 216 - 20 = -128

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Prove that the following function do not have maxima or minima:

f(x) = ex


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


What is the maximum value of the function sin x + cos x?


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : f(x) = `logx/x`


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


The function f(x) = x log x is minimum at x = ______.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

A function f(x) is maximum at x = a when f'(a) > 0.


Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


If x + y = 8, then the maximum value of x2y is ______.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×