English

Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers. - Mathematics

Advertisements
Advertisements

Question

Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.

Sum

Solution

Let two numbers be x and y then

x + y = 5  ...(i)

Let S = x3 + y3  ...(ii)

= x3 + (5 – x)3  ...[From (i)]

dSdx = 3x2 + 3(5 – x)2 (– 1)

dSdx = 3x2 – 3(25 + x2 – 10x)

= 3x2 – 75 – 3x2 + 30x

= 30x – 75

For maximum or minimum

dSdx = 0

30x – 75 = 0

x = 7535=52

When x = 52, y = 5-52=52  ...[From (i)]

d2Sdx2 = 30 which is +ve.

So the sum is least when x = 52 and y = 52

S = x2 + y2

= 254+254

= 504

= 252

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 1

RELATED QUESTIONS

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x)=x2+2x,x>0


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  Sin-1(13).


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


If x + y = 3 show that the maximum value of x2y is 4.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


If f(x) = x+1x,x0, then local maximum and x minimum values of function f are respectively.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


The minimum value of α for which the equation 4sinx+11-sinx = α has at least one solution in (0,π2) is ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then (4π+1)k is equal to ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = and f''(x) =

f'(x ) = 0 gives x = and f''(8) = > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.