English

Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 i. has local maxima ii. local minima iii. point of inflexion - Mathematics

Advertisements
Advertisements

Question

Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion
Sum

Solution

Here, f (x) = (x - 2)4 (x + 1)4

∴ f'(x) = (x – 2)4 · 3(x + 1)2 + (x + 1)3 · 4(x - 2)3

= (x – 2)3 (x + 1)2 [3(x – 2) + 4(x + 1)]

= (x – 2)3 (x + 1)2 [3x – 6 + 4x + 4]

= (x – 2)3 (x + 1)2 (7x – 2)

= 7(x - 2)3 (x + 1)2 `(x - 2/7)`

For maximum/minimum, 1(x) = 0

⇒ 7(x - 2)3 + (x + 1)2 `(x - 2/7)` = 0

∴ x = 2, -1, `2/7`

(i) When x = 2,
x is near 2 and to the left of 2 then, f(x) = (-)(+)(+) = -ve

x is near 2 and to the right of 2 then, f(x) = (+)(+)(+) = + ve

∴ The sign of f(x) changes from negative to positive as x passes through x = -2.

⇒ f is minimum at x = 2.

(ii)  At, x = -1

For values ​​of x near -1 and less than 1,

f'(x) = (-)(+)(-) = + ve

For values ​​of x near to -1 and greater than -1,

f(x) = (-)(+)(-) = + ve

does not change its sign while passing through the point x = -1.

⇒ Thus, x = -1 is a point of inflexion

(iii) At, x = `2/7` = 0.28

On placing the value of x less than `2/7` near `2/7`,

f'(x) = (-)(+)(-) = + ve

Keeping the value of x close to `2/7` and greater than `2/7`,

f'(x) = (-)(+)(-) = -ve

⇒ At x = `2/7`, (x) changes from positive to negative.

As x passes through, x = `2/7`.

Thus it is minimum at x = 2, inflexion at x = -1 and a maximum at x = `2/7`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.6 [Page 243]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.6 | Q 13 | Page 243

RELATED QUESTIONS

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

g(x) = logx


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = x log x


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


Divide the number 20 into two parts such that their product is maximum


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A function f(x) is maximum at x = a when f'(a) > 0.


Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


Find the maximum and the minimum values of the function f(x) = x2ex.


If x + y = 8, then the maximum value of x2y is ______.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×