हिंदी

Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 i. has local maxima ii. local minima iii. point of inflexion - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion
योग

उत्तर

Here, f (x) = (x - 2)4 (x + 1)4

∴ f'(x) = (x – 2)4 · 3(x + 1)2 + (x + 1)3 · 4(x - 2)3

= (x – 2)3 (x + 1)2 [3(x – 2) + 4(x + 1)]

= (x – 2)3 (x + 1)2 [3x – 6 + 4x + 4]

= (x – 2)3 (x + 1)2 (7x – 2)

= 7(x - 2)3 (x + 1)2 `(x - 2/7)`

For maximum/minimum, 1(x) = 0

⇒ 7(x - 2)3 + (x + 1)2 `(x - 2/7)` = 0

∴ x = 2, -1, `2/7`

(i) When x = 2,
x is near 2 and to the left of 2 then, f(x) = (-)(+)(+) = -ve

x is near 2 and to the right of 2 then, f(x) = (+)(+)(+) = + ve

∴ The sign of f(x) changes from negative to positive as x passes through x = -2.

⇒ f is minimum at x = 2.

(ii)  At, x = -1

For values ​​of x near -1 and less than 1,

f'(x) = (-)(+)(-) = + ve

For values ​​of x near to -1 and greater than -1,

f(x) = (-)(+)(-) = + ve

does not change its sign while passing through the point x = -1.

⇒ Thus, x = -1 is a point of inflexion

(iii) At, x = `2/7` = 0.28

On placing the value of x less than `2/7` near `2/7`,

f'(x) = (-)(+)(-) = + ve

Keeping the value of x close to `2/7` and greater than `2/7`,

f'(x) = (-)(+)(-) = -ve

⇒ At x = `2/7`, (x) changes from positive to negative.

As x passes through, x = `2/7`.

Thus it is minimum at x = 2, inflexion at x = -1 and a maximum at x = `2/7`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.6 [पृष्ठ २४३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.6 | Q 13 | पृष्ठ २४३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The function y = 1 + sin x is maximum, when x = ______ 


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The maximum value of sin x . cos x is ______.


The function `"f"("x") = "x" + 4/"x"` has ____________.


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


The minimum value of the function f(x) = xlogx is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×