हिंदी

Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.

योग

उत्तर

Let R be the radius and h be the height of the cylinder which is inscribed in a sphere of radius r cm.

Then from the figure,

`"R"^2 + (h/2)^2` = r2

∴ R2  = `r^2 - h^2/(4)`   ...(1)

Let V be the volume of the cylinder.
Then V = πR2h

= `pi(r^2 - h^2/(4))h`   ...[By (1)]

= `pi(r^2 - h^3/(4))`

∴ `"dV"/"dh" = pid/"dh"(r^2h - h^3/(4))`

= `pi(r^2 xx 1 - 1/4 xx 3h^2)`

= `pi(r^2 - 3/4h^2)`
and
`(d^2V)/("dh"^2) = pid/"dh"(r^2 - 3/4h^2)`

= `pi(0 - 3/4 xx 2h)`

= `-(3)/(2)pih`

Now, `"dV"/"dh" = 0  "gives", pi(r^2 - 3/4h^2)` = 0

∴ `r^2 - 3/4h^2` = 0

∴ `(3)/(4)h^2` = r

∴ h2 = `(4r^2)/(3)`

∴ h = `(2r)/sqrt(3)`          ...[∵ h > 0]
and
`((d^2V)/(dh^2))_("at"  h = (2r)/sqrt(3)`

= `-(3)/(2)pi xx (2r)/sqrt(3) < 0`

∴ V is maximum at h = `(2r)/sqrt(3)`

If h = `(2r)/sqrt(3)`, then from (1)

R2 = `r^2 - (1)/(4) xx (4r^2)/(3) = (2r^2)/(3)`

∴ volumeof the largest cylinder

= `pi xx (2r^2)/(3) xx (2r)/sqrt(3) = (4pir^3)/(3sqrt(3)`cu cm.

Hence, the volume of the largest cylinder inscribed in a sphere of radius 'r' cm = `(4r^3)/(3sqrt(3)`cu cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.4 | Q 22 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Prove that the following function do not have maxima or minima:

f(x) = ex


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Divide the number 20 into two parts such that sum of their squares is minimum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


If x + y = 3 show that the maximum value of x2y is 4.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The function y = 1 + sin x is maximum, when x = ______ 


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of sin x . cos x is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Range of projectile will be maximum when angle of projectile is


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


A function f(x) is maximum at x = a when f'(a) > 0.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The minimum value of the function f(x) = xlogx is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


If x + y = 8, then the maximum value of x2y is ______.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×