हिंदी

Prove that the Semi-vertical Angle of the Right Circular Cone of Given Volume and Least Curved Surface is Cot − 1 ( √ 2 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .

योग

उत्तर १

Let:

Radius of the base = r,

Height = h,

Slant height = l,

Volume = V,

Curved surface area = C

\[\text { As, Volume }, V = \frac{1}{3}\pi r^2 h\]

\[ \Rightarrow h = \frac{3V}{\pi r^2}\]

\[\text { Also, the slant height, l } = \sqrt{h^2 + r^2}\]

\[ = \sqrt{\left( \frac{3V}{\pi r^2} \right)^2 + r^2}\]

\[ = \sqrt{\frac{9 V^2}{\pi^2 r^4} + r^2}\]

\[ = \sqrt{\frac{9 V^2 + \pi^2 r^6}{\pi^2 r^4}}\]

\[ \Rightarrow l = \frac{\sqrt{9 V^2 + \pi^2 r^6}}{\pi r^2}\]

\[\text { Now, }\]

\[\text { CSA, C } = \pi rl\]

\[ \Rightarrow C\left( r \right) = \pi r\frac{\sqrt{9 V^2 + \pi^2 r^6}}{\pi r^2}\]

\[ \Rightarrow C\left( r \right) = \frac{\sqrt{9 V^2 + \pi^2 r^6}}{r}\]

\[ \Rightarrow C'\left( r \right) = \frac{r \times \frac{6 \pi^2 r^5}{2\sqrt{9 V^2 + \pi^2 r^6}} - \sqrt{9 V^2 + \pi^2 r^6}}{r^2}\]

\[ = \frac{\left[ \frac{3 \pi^2 r^6 - \left( 9 V^2 + \pi^2 r^6 \right)}{\sqrt{9 V^2 + \pi^2 r^6}} \right]}{r^2}\]

\[ = \frac{3 \pi^2 r^6 - 9 V^2 - \pi^2 r^6}{r^2 \sqrt{9 V^2 + \pi^2 r^6}}\]

\[ = \frac{2 \pi^2 r^6 - 9 V^2}{r^2 \sqrt{9 V^2 + \pi^2 r^6}}\]

\[\text { For maxima or minima, C }'\left( r \right) = 0\]

\[ \Rightarrow \frac{2 \pi^2 r^6 - 9 V^2}{r^2 \sqrt{9 V^2 + \pi^2 r^6}} = 0\]

\[ \Rightarrow 2 \pi^2 r^6 - 9 V^2 = 0\]

\[ \Rightarrow 2 \pi^2 r^6 = 9 V^2 \]

\[ \Rightarrow V^2 = \frac{2 \pi^2 r^6}{9}\]

\[ \Rightarrow V = \sqrt{\frac{2 \pi^2 r^6}{9}}\]

\[ \Rightarrow V = \frac{\pi r^3 \sqrt{2}}{3} or \ r = \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} \]

\[\text { So,} h = \frac{3}{\pi r^2} \times \frac{\pi r^3 \sqrt{2}}{3}\]

\[ \Rightarrow h = r\sqrt{2}\]

\[ \Rightarrow \frac{h}{r} = \sqrt{2}\]

\[ \Rightarrow \cot\theta = \sqrt{2}\]

\[ \therefore \theta = \cot^{- 1} \left( \sqrt{2} \right)\]

\[\text { Also }, \]

\[\text { Since, for } r < \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} , C'\left( r \right) < 0 \text { and for } r > \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} , C'\left( r \right) > 0\]

\[\text { So, the curved surface for r  }= \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} or V = \frac{\pi r^3 \sqrt{2}}{3}\text { is the least } .\]

shaalaa.com

उत्तर २

Volume V = `1/3πr^2h`   ...(1)

Also l2 = h2 + r2   ...(2)

∵ Volume V is given, so V is constant.


Curved area of cone

c = πrl = `πrsqrt(h^2 + r^2)`   ...[By (2)]

c2 = π2r2(h2 + r2)

c2 = `π^2r^2 {(9V^2)/(π^2r^2) + r^2}`   ...`{By (1), h = (3V)/(πr^2)}`

c2 = `(9V^2)/r^2 + π^2r^4`

Differentiate w.r. to ‘r’

`d/(dr) (c^2) = (-18V^2)/r^3 + 4π^2r^3`   ...(3)

and `(d^2(c^2))/(dr^2) = (54V^2)/r^2 + 12π^2r^2`  ...(4)

For least curved area `(d(c^2))/(dr)` = 0

`\implies (-18V^2)/r^3 + 4π^2r^3` = 0

`\implies` 9V2 = 2π2r6

`\implies` `9 xx 1/9 π^2r^4h^2` = 2π2r6 

`\implies` h2 = 2r2

h = `sqrt(2)r`

Also by (4) `(d^2(c^2))/(dr^2) > 0`

∴ c2 is minimum

`\implies` c is also minimum.

Hence c is least when h = `sqrt(2)r`

`\implies h/r = sqrt(2)`

`\implies` cot α = `sqrt(2)`

α = `cot^-1 (sqrt(2))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.5 | Q 21 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


If f(x) = x.log.x then its maximum value is ______.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The function y = 1 + sin x is maximum, when x = ______ 


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `(1/x)^x` is ______.


Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


Range of projectile will be maximum when angle of projectile is


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


The maximum value of the function f(x) = `logx/x` is ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The minimum value of the function f(x) = xlogx is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×