Advertisements
Advertisements
प्रश्न
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
उत्तर
f(x) = 4x3 – 18x2 + 27x – 7
f′(x) = 12x2 – 36x + 27
= 3(4x2 – 12x + 9)
= 3(2x – 3)2
f'(x) = 0
⇒ x = `3/2` .....(critical point)
Since f′(x) > 0 for all x < `3/2` and for all x > `3/2`
Hence x = `3/2` is a point of inflexion
i.e., neither a point of maxima nor a point of minima.
x = `3/2` is the only critical point, and f has neither maxima nor minima.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.
The function y = 1 + sin x is maximum, when x = ______
The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______
The minimum value of the function f(x) = 13 - 14x + 9x2 is ______
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
The maximum value of the function f(x) = `logx/x` is ______.
Let A = [aij] be a 3 × 3 matrix, where
aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, "," "otherwise"):}`
Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.
The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
If x + y = 8, then the maximum value of x2y is ______.
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?