हिंदी

A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?

योग

उत्तर

Let x cm be the side of square base and h cm be its height.

Then x2 + 4xh = 147

∴ h = `(147 - x^2)/(4x)`                    ...(1)

Let V = `x^2"h"`

= `x^2((147 - x^2)/(4x))`   ...[By (1)]

∴ V = `(1)/(4)(147x - x^3)`

∴ `"dV"/("d"x) = (1)/(4) (147x - x^3) = 0`

∴ 147 = 3x2

∴ `147/3 = x^2`

∴ x2 = 49

∴ x = 7

Put in eq (i)

∴ h = `(147 - x^2)/(4x)`   

∴ h = `(147 - 49)/(4(7))`   

∴ h = `98/(4 xx 7)`

∴ h = `14/4`

∴ h = `7/2`

∴ h = 3.5

Hence, the volume of the box is largest when the side of square base is 7 cm and its height is 3.5 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Prove that the following function do not have maxima or minima:

f(x) = ex


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


What is the maximum value of the function sin x + cos x?


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Divide the number 30 into two parts such that their product is maximum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = x log x


Divide the number 20 into two parts such that their product is maximum.


If x + y = 3 show that the maximum value of x2y is 4.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


The function f(x) = x log x is minimum at x = ______.


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


Divide the number 20 into two parts such that their product is maximum


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


The function y = 1 + sin x is maximum, when x = ______ 


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Let f have second derivative at c such that f′(c) = 0 and f"(c) > 0, then c is a point of ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of sin x . cos x is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `(1/x)^x` is ______.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


Range of projectile will be maximum when angle of projectile is


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The minimum value of 2sinx + 2cosx is ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The minimum value of the function f(x) = xlogx is ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


If x + y = 8, then the maximum value of x2y is ______.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×