हिंदी

Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.

योग

उत्तर

Given function g(x) = - |x + 1| + 3; g (3) ≤ 3∀ x ∈ R

Maximum value of -|x +1| = 0

Maximum value of g(x) = -|x + 1| + 3 = 0 + 3 = 3

occurs when x + 1 = 0, i.e., when x = -1.

Note that g(x) has no minimum value, for g (x) → a - ∞ as |x| ∞.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 2.2 | पृष्ठ २३२

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find two numbers whose sum is 24 and whose product is as large as possible.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


Divide the number 20 into two parts such that their product is maximum


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


The maximum value of `(1/x)^x` is ______.


If y = x3 + x2 + x + 1, then y ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


Divide 20 into two ports, so that their product is maximum.


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.

Solution: Let one part be x. Then the other part is 84 - x

Letf (x) = x2 (84 - x) = 84x2 - x3

∴ f'(x) = `square`

and f''(x) = `square`

For extreme values, f'(x) = 0

∴ x = `square  "or"    square`

f(x) attains maximum at x = `square`

Hence, the two parts of 84 are 56 and 28.


If x + y = 8, then the maximum value of x2y is ______.


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×