Advertisements
Advertisements
प्रश्न
Divide 20 into two ports, so that their product is maximum.
उत्तर
Let one part of 20 be x.
∴ The other part is (20 – x)
∴ Product = x.(20 – x)
Which has to be maximized.
∴ f(x) = x.(20 – x)
= 20x – x2
∴ f'(x) = 20 – 2x
f"(x) = – 2 < 0
Let f'(x) = 0
∴ 20 – 2x = 0
⇒ 2x = 20
⇒ x = 10
And f"(x) = – 2 < 0
∴ By 2nd derivative test, f is maximum at x = 10
∴ 20 – x = 20 – 10 = 10.
∴ The required parts of 20 are 10 and 10.
APPEARS IN
संबंधित प्रश्न
Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.` Also, find the maximum volume.
Prove that the following function do not have maxima or minima:
g(x) = logx
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].
Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
Find the maximum and minimum of the following functions : f(x) = `logx/x`
An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.
Solve the following:
Find the maximum and minimum values of the function f(x) = cos2x + sinx.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
If x + y = 3 show that the maximum value of x2y is 4.
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.
The function `"f"("x") = "x" + 4/"x"` has ____________.
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.
The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.
A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
Find the maximum and the minimum values of the function f(x) = x2ex.