हिंदी

The function f(x) = 2x3 – 3x2 – 12x + 4, has ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.

विकल्प

  • Two points of local maximum

  • Two points of local minimum

  • One maxima and one minima

  • No maxima or minima

MCQ
रिक्त स्थान भरें

उत्तर

The function f(x) = 2x3 – 3x2 – 12x + 4, has one maxima and one minima.

Explanation:

We have f(x) = 2x3 – 3x2 – 12x + 4

f'(x) = 6x2 – 6x – 12

For local maxima and local minima f'(x) = 0

∴ 6x2 – 6x – 12 = 0

⇒ x2 – x – 2 = 0

⇒ x2 – 2x + x – 2 = 0

⇒ x(x – 2) + 1(x – 2) = 0

⇒ (x + 1)(x – 2) = 0

x = –1, 2 are the points of local maxima and local minima

Now f'(x) = 12x – 6

`"f''"(x)_(x = -1)` = 12(–1) – 6

= – 12 – 6

= – 18 < 0, maxima

`"f''"(x)_(x = 2)` = 12(2) – 6

= 24 – 6

= 18 > 0 minima

So, the function is maximum at x = –1 and minimum at x = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 54 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Show that among rectangles of given area, the square has least perimeter.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


The function `"f"("x") = "x" + 4/"x"` has ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


Range of projectile will be maximum when angle of projectile is


Divide 20 into two ports, so that their product is maximum.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

A function f(x) is maximum at x = a when f'(a) > 0.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×