हिंदी

The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.

रिक्त स्थान भरें

उत्तर

The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point `(- 1/3, (-74)/9)`.

Explanation:

We have y = 4x2 + 2x – 8   .....(i)

And y = x3 – x + 13    .....(ii)

Differentiating eq. (i) w.r.t. x, we have

`"dy"/'dx"` = 8x + 2

⇒ m1 = 8x + 2  .....[m is the slope of curve (i)]

Differentiating eq. (ii) w.r.t. x, we get

`"dy"/"dx"` = 3x2 – 1

⇒ m2 = 3x2 – 1  ......[m2 is the slope of curve (ii)]

If the two curves touch each other, then m1 = m2

∴ 8x + 2 = 3x2 – 1

⇒ 3x2 – 8x – 3 = 0

⇒ 3x2 – 9x + x – 3 = 0

⇒ 3x(x – 3) + 1(x – 3) = 0

⇒ (x – 3)(3x + 1) = 0

∴ x = 3, `(-1)/3`

Putting x = 3 in equation (i), we get

y = 4(3)2 + 2(3) – 8

= 36 + 6 – 8

= 34

So, the required point is (3, 34)

Now for x = `- 1/3`

y = `4((-1)/3)^2 + 2((-1)/3) - 8`

= `4 xx 1/9 - 2/3 - 8`

= `4/9 - 2/3 - 8`

= `(4 - 6 - 72)/9`

= `(-74)/9`

∴ Other required point is `(- 1/3, (-74)/9)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 60 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = x log x


Find the maximum and minimum of the following functions : f(x) = `logx/x`


A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The maximum value of `[x(x - 1) + 1]^(2/3), 0 ≤ x ≤ 1` is


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


If x + y = 8, then the maximum value of x2y is ______.


Divide the number 100 into two parts so that the sum of their squares is minimum.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×