हिंदी

Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.

योग

उत्तर

We have p(x) = 41 - 72x - 18x2

p'(x) = -72 - 36x

Now for critical points, p'(x) = 0

-72 - 36x = 0

x = -2

p'' (x) = -36 < 0

∴ Profit is maximum at x = -2, and maximum profit is p(-2) = 41 - 72 (-2) - 18 (-2)2

= 41 + 144 - 72

= 185 - 72

= 133 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.5 | Q 6 | पृष्ठ २३२

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Divide the number 20 into two parts such that their product is maximum


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


The function y = 1 + sin x is maximum, when x = ______ 


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


If x is real, the minimum value of x2 – 8x + 17 is ______.


The maximum value of sin x . cos x is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


Range of projectile will be maximum when angle of projectile is


Divide 20 into two ports, so that their product is maximum.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×