Advertisements
Advertisements
प्रश्न
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
उत्तर
Let P be a point on the hypotenuse of ∆ABC.
Draw perpendicular PL from P on AB and PM from P on BC.
Let ∠ACB = θ = ∠APL
AP = a sec θ, PC = b cosec θ
Let the length of the hypotenuse be l, then
l = AP + PC
= a sec θ + b cosec θ
On differentiating with respect to θ,
`therefore (dl)/(d theta) = a sec theta tan theta - b cosec theta cot theta`
For maximum and minimum, `(dl)/(d theta) = 0`
⇒ a sec θ tan θ - b cosec θ cot θ = 0
`=> a 1/(cos θ) * (sin θ)/(cos θ) - b 1/(sin θ) * (cos θ)/(sin θ) = 0`
`=> (a sin θ)/(cos^2 θ) - (b cos θ)/(sin^2 θ) = 0`
⇒ a sin3 θ - b cos3 θ = 0
⇒ a sin3 θ = b cos3 θ
`=> (sin^3 θ)/(cos^3 θ) = b/a`
`=> tan^3 θ = b/a`
`=> tan θ = (b/a)^(1//3)`
On differentiating again,
`(d^2l)/(d theta) = a (sec θ * sec^2 θ + tan θ * sec θ tan θ) - b [cosec θ (- cosec^2 θ) + cot θ (- cosec θ cot θ)]`
`= a sec θ (sec^2 θ + tan^2 θ) + b cosec θ xx (cosec^2 θ xx cot^2 θ)`
`because 0 < theta < pi/2` So all trigonometric ratios of θ are positive.
`therefore (d^2 l)/(d theta)^2` = + ve i.e. l is minimum.
a > 0 and b > 0
`therefore (d^2 l)/(d theta)^2` = + ve
When `tan theta = (b/a)^(1/3)` then l is minimum.
∴ Minimum value of l = a sec θ + b cosec θ
`= a sqrt (a^(2/3) + b^(2/3))/(a^(1/3)) + b sqrt (a^(2/3) + b^(2/3))/ b^(1/3)`
`= sqrt (a^(2/3) + b^(2/3)) (a^(2/3) + b^(2/3))`
`= (a^(2/3) + b^(2/3))^(3/2).`
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
g(x) = x3 − 3x
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`h(x) = sinx + cosx, 0 < x < pi/2`
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].
Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.
Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has
- local maxima
- local minima
- point of inflexion
A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].
A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle.
Find the point on the straight line 2x+3y = 6, which is closest to the origin.
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area.
Divide the number 30 into two parts such that their product is maximum.
Divide the number 20 into two parts such that sum of their squares is minimum.
An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.
Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.
The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
A function f(x) is maximum at x = a when f'(a) > 0.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.
The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
Divide the number 100 into two parts so that the sum of their squares is minimum.