Advertisements
Advertisements
प्रश्न
Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.
उत्तर
Given the right circular cone of fixed height h and semi-vertical angle `oo`.
Let R be the radius of the base and H be the height of right circular cylinder that can be inscribed in the right circular cone.
In the figure, ∠GAO = ∞, OG = r, OA = h, OE = R, CE = H.
We have `r/h = tanx`
∴ r = h tan x ...(1)
Since ΔAOG anf ΔCEG are similar.
∴ `"AO"/"OG" = "CE"/"EG" = "CE"/"OG - OE"`
∴ `h/r = "H"/"r - R"`
∴ H = `h/r(r - R)`
= `"h"/"h tan oo"(h tan oo- R)` ...[By (1)]
∴ H = `(1)/tanoo(h tan oo - R)` ...(2)
Let V be the volume of the cylinder
Then V = `piR^2H = (piR^2)/tanoo(h tan oo - R)`
∴ V = `piR2h - (piR^3)/tan oo`
∴ `"dV"/"dR" = d/"dR"(piR^2h - (piR^3)/tan oo)`
= `piR xx 2R - pi/tan oo xx 3R^2`
= `2piRh - (3piR^2)/tan oo`
and
`(d^2V)/(dR^2) = d/"dR"(2piRh - (3pir^2)/tan oo)`
= `2pih xx 1 - (3pi)/tanoo xx 2R`
= `2pih - (6piR)/tanoo`
For maximum volume, `"dV"/"dR"` = 0
∴ `2piRh - (3piR^2)/tanoo` = 0
∴ `(3piR2)/tanoo = 2piRh`
∴ R = `(2h)/(3) tanoo` ...[∵ R ≠ 0]
and
`((d^2V)/(dR^2))_("at" R = (2h)/(3)tanx`
= `2pih - (6pi)/tanoo xx (2h)/(3) tan oo`
= 2πh – 4πh = – 2πh < 0
∴ V is maximum when R = `(2h)/(3)tanoo`
When R = `(2h)/(3)tanoo`, then from (2), we get
H = `(1)/tanoo(h tan oo - (2h)/3 tann oo) = h/(3)`
Hence, the height of the right circular cylinder is one- third of that of the cone.
APPEARS IN
संबंधित प्रश्न
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = 1/(x^2 + 2)`
Prove that the following function do not have maxima or minima:
g(x) = logx
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) =x^3, x in [-2,2]`
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = sin x + cos x , x ∈ [0, π]
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.
Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find two numbers whose sum is 24 and whose product is as large as possible.
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.
The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Divide the number 30 into two parts such that their product is maximum.
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?
The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.
Solve the following:
A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.
Determine the maximum and minimum value of the following function.
f(x) = x log x
Divide the number 20 into two parts such that their product is maximum.
A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum
By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima
Solution: f(x) = x3 – 9x2 + 24x
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme values, f'(x) = 0, we get
x = `square` or `square`
∴ f''`(square)` = – 6 < 0
∴ f(x) is maximum at x = 2.
∴ Maximum value = `square`
∴ f''`(square)` = 6 > 0
∴ f(x) is maximum at x = 4.
∴ Minimum value = `square`
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______
The minimum value of the function f(x) = 13 - 14x + 9x2 is ______
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
If x is real, the minimum value of x2 – 8x + 17 is ______.
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
If y = x3 + x2 + x + 1, then y ____________.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
Range of projectile will be maximum when angle of projectile is
The function `f(x) = x^3 - 6x^2 + 9x + 25` has
Read the following passage and answer the questions given below.
|
- Is the function differentiable in the interval (0, 12)? Justify your answer.
- If 6 is the critical point of the function, then find the value of the constant m.
- Find the intervals in which the function is strictly increasing/strictly decreasing.
OR
Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.
The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.
A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.
The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.
A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) `= x sqrt(1 - x), 0 < x < 1`