Advertisements
Advertisements
प्रश्न
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
उत्तर
Let ABCD be the rectangle inscribed in a semicircle of radius 1 unit such that the vertices A and B lie on the diameter.
Let AB = DC = x and BC = AD = y.
Let O be the centre of the semicircle.
Join OC and OD. Then OC = OD = radius = 1.
Also, AD = BC and m∠A = m∠B = 90°.
∴ OA= OB
∴ OB = `(1)/(2) "AB" = x/(2)`
In right angled triangle OBC,
OB2 + BC2 = OC2
∴ `(x/2)^2 + y^2` = 12
∴ y2 = `1 - x^2/(4) = (1)/(4)(4 - x^2)`
∴ y = `(1)/(2)sqrt(4 - x^2)` ...[∵ y > 0]
Also of the triangle
= xy
= `x.(1)/(2)sqrt(4 - x^2)`
Let f(x) = `(1)/(2) xx sqrt(4 - x^2)`
= `(1)/(2)sqrt(4x2 - x^4)`
∴ f'(x) = `(1)/(2)d/dx(sqrt(4x^2 - x^4))`
= `(1)/(2) xx (1)/(2sqrt(4x^2 - x^4)) xx.d/dx(4x^2 - x^4)`
= `(1)/(4sqrt(4x^2 - x^4)) xx (4 xx 2x - 4x^3)`
= `(4x(2 - x2))/(4xsqrt(4 - x^2)`
= `(2 - x^2)/sqrt(4 - x^2)` ...[∵ x ≠ 0]
and
f"(x) = `d/dx((2 - x^2)/sqrt(4 - x^2))`
= `d/dx[((4 - x^2) - 2)/sqrt(4 - x^2)]`
= `d/dx[sqrt(4 - x^2) - (2)/sqrt(4 - x^2)]`
= `d/dx(sqrt(4 - x^2)) - 2d/dx(4 - x^2)^(-1/2)`
= `(1)/(2sqrt(4 - x^2)).d/dx(4- x^2) - 2(-1/2)(4 - x^2)^(-3/2).d/dx(4 - x^2)`
= `(1)/(2sqrt(4 -+ x^2)) xx (0 - 2x) + (1)/(4 - x^2)^(3/2) xx (0 - 2x)`
= `-x/sqrt(4 - x^2) - (2x)/(4 - x^2)^(3/2)`
= `(-x(4 - x^2) - 2x)/(4 - x^2)^(3/2)`
= `(-4x + x^3 - 2x)/(4 - x^2)^(3/2)`
= `(x^3 - 6x)/(4 - x^2)^(3/2)`
For maximum value of f(x),f'(x) = 0
∴ `(2 - x^2)/sqrt(4 - x^2)` = 0
∴ 2 – x2 = 0
∴ x2 = 2
∴ x = `sqrt(2)` ...[∵ x > 0]
Now, f"`(sqrt(2)) = ((sqrt(2))^3 - 6sqrt(2))/[4 - (sqrt(2))^2]^(3/2)`
= `(-4sqrt(2))/(2sqrt(2))`
= – 2 < 0
∴ by the second derivative test, f is maximum when x = `sqrt(2)`
When `x = sqrt(2), y = (1)/(2)sqrt(4 - x^2)`
= `(1)/(2)sqrt(4 - 2)`
= `(1)/(2) xx sqrt(2)`
= `(1)/sqrt(2)`
∴ `x = sqrt(2) and y = (1)/sqrt(2)`
Hence, the area of the rectangle is maximum (i.e. rectangle has the largest size) when its length is `sqrt(2)` units and breadth is `(1)/sqrt(2)`unit.
APPEARS IN
संबंधित प्रश्न
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]
An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.
Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3.
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
Prove that the following function do not have maxima or minima:
h(x) = x3 + x2 + x + 1
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = (x −1)2 + 3, x ∈[−3, 1]
What is the maximum value of the function sin x + cos x?
Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.
Show that semi-vertical angle of right circular cone of given surface area and maximum volume is `Sin^(-1) (1/3).`
For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening
Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has
- local maxima
- local minima
- point of inflexion
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.
Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x
Divide the number 30 into two parts such that their product is maximum.
Divide the number 20 into two parts such that sum of their squares is minimum.
A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.
An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.
Determine the maximum and minimum value of the following function.
f(x) = 2x3 – 21x2 + 36x – 20
Determine the maximum and minimum value of the following function.
f(x) = x log x
Divide the number 20 into two parts such that their product is maximum.
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
Divide the number 20 into two parts such that their product is maximum
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.
Solution: Let the dimensions of the rectangle be x cm and y cm.
∴ 2x + 2y = 36
Let f(x) be the area of rectangle in terms of x, then
f(x) = `square`
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme value, f'(x) = 0, we get
x = `square`
∴ f''`(square)` = – 2 < 0
∴ Area is maximum when x = `square`, y = `square`
∴ Dimensions of rectangle are `square`
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
The function y = 1 + sin x is maximum, when x = ______
The minimum value of the function f(x) = 13 - 14x + 9x2 is ______
The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`
Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The maximum value of sin x . cos x is ______.
The maximum value of `(1/x)^x` is ______.
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
The function `"f"("x") = "x" + 4/"x"` has ____________.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.
If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.
If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.
The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.
The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.
Solution: Let x cm and y cm be the length and breadth of a rectangle.
Then its area is xy = 50
∴ `y =50/x`
Perimeter of rectangle `=2(x+y)=2(x+50/x)`
Let f(x) `=2(x+50/x)`
Then f'(x) = `square` and f''(x) = `square`
Now,f'(x) = 0, if x = `square`
But x is not negative.
∴ `x = root(5)(2) "and" f^('')(root(5)(2))=square>0`
∴ by the second derivative test f is minimum at x = `root(5)(2)`
When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`
∴ `x=root(5)(2) "cm" , y = root(5)(2) "cm"`
Hence, rectangle is a square of side `root(5)(2) "cm"`
Find the maximum and the minimum values of the function f(x) = x2ex.
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20