हिंदी

Determine the maximum and minimum value of the following function. f(x) = 2x3 – 21x2 + 36x – 20 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20

योग

उत्तर

f(x) = 2x3 – 21x2 + 36x – 20

∴ f'(x) = 6x2 – 42x + 36  and f''(x) = 12x – 42

Consider, f '(x) = 0

∴ 6x2 – 42x + 36 = 0

∴ 6(x2 – 7x + 6) = 0

∴ 6(x – 1)(x - 6) = 0

∴ (x – 1)(x – 6) = 0

∴ x – 1 = 0 or x – 6 = 0

∴ x = 1  or x = 6

For x = 1,

f''(1) = 12(1) – 42 = 12 – 42 = – 30 < 0

∴ f(x) attains maximum value at x = 1.

∴ Maximum value = f(1)

= 2(1)3 – 21(1)2 + 36(1) – 20

= 2 – 21 + 36 – 20

= – 19 – 20 + 36

= – 39 + 36

= – 3

∴ The function f(x) has maximum value – 3 at x = 1.

For x = 6,

f''(6) = 12(6) – 42 = 72 – 42 = 30 > 0

∴ f(x) attains minimum value at x = 6.

∴ Minimum value = f(6)

= 2(6)3 – 21(6)2 + 36(6) – 20

= 432 – 756 + 216 – 20

= – 128

∴ The function f(x) has minimum value – 128 at x = 6.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Applications of Derivatives - Exercise 4.3 [पृष्ठ १०९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Applications of Derivatives
Exercise 4.3 | Q 1.1 | पृष्ठ १०९

संबंधित प्रश्न

Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


What is the maximum value of the function sin x + cos x?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


The function f(x) = x log x is minimum at x = ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


If y = x3 + x2 + x + 1, then y ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


Divide 20 into two ports, so that their product is maximum.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×