Advertisements
Advertisements
प्रश्न
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
उत्तर
f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = 6x2 – 30x – 84
= 6(x2 – 5x – 14)
= 6(x2 – 7x + 2x – 14)
= 6(x – 7)(x + 2)
f(x) is an decreasing function, if f'(x) < 0
∴ 6(x – 7)(x + 2) < 0
∴ (x – 7)(x + 2) < 0
ab < 0 `⇔` a > 0 and b < 0 or a < 0 or b > 0
∴ Either (x – 7) > 0 and (x + 2) < 0 or
(x – 7) < 0 and (x + 2) > 0
Case 1: x – 7 > 0 and x + 2 < 0
∴ x > 7 and x < –2, which is not possible.
Case 2: x – 7 < 0 and x + 2 > 0
∴ x < 7 and x > –2
Thus, f(x) is an decreasing function for –2 < x < 7 i.e., (–2, 7)
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The function f(x) = 9 - x5 - x7 is decreasing for
For every value of x, the function f(x) = `1/7^x` is ______
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Function given by f(x) = sin x is strictly increasing in.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?